Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Nutr ; 12(2): 1082-1094, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38370085

RESUMO

Oxidative stress in skin cells caused by changes in the external environment is one of the principal causes of skin aging. Sea buckthorn proanthocyanidins (SBPs) have good free radical scavenging ability. We established a senescence model by injecting 500 mg/kg D-galactose into the dorsal necks of mice, and then different doses of SBP (25, 50, and 100 mg/kg) were gavaged to explore the effects of SBP on the skin tissues of senescent mice and elucidate the related mechanism of action. The results reveal that SBP can alleviate the skin aging phenomenon caused by D-galactose-induced aging. It can also enhance the total antioxidant capacity in the body, thereby strengthening the body's antioxidant defense capability. In addition, SBP can effectively improve skin aging by regulating the TGF-ß1/Smads pathway and MMPs/TIMP system, increasing the relative content of Col I and tropoelastin, further maintaining the stability of collagen fiber and elastic fiber structure. These results will provide the development and production of the antioxidant function of cosmetics and health products, providing a new train of thought.

2.
Antioxidants (Basel) ; 11(10)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36290623

RESUMO

Oxidative stress is the leading cause of skin aging damage. Excessive accumulation of reactive oxygen species (ROS) in cells induced by hydrogen peroxide (H2O2) triggers a decrease in collagen synthesis and an increase in collagen degradation, which are biomarkers of skin aging. We evaluated the potential protective mechanism of Sea buckthorn proanthocyanidins (SBP) against the oxidative stress-induced skin aging process from multiple aspects. We treated human skin fibroblasts (HSFs) with 300 µmoL/L of H2O2 for 24 h, followed by 25, 50, and 100 µg/mL of SBP for 24 h. The results showed that SBP could enhance the activities of superoxide dismutase (SOD) and glutathione (GSH), effectively remove excess ROS, and significantly improve the changes in cell morphology and viability caused by excessive ROS in skin cells. In addition, SBP could promote the synthesis of Col I in aging HSFs through the TGF-ß1/Smads pathway and inhibit the degradation of Col I by regulating the MMPs/TIMPs system, thereby maintaining the stability of the ECM structure to achieve anti-aging purposes. Finally, we studied the migration ability of SBP, and the results showed that 100 µg/mL of SBP was most conducive to the cell migration of senescent cells, laying a foundation for follow-up animal experiments. These results will increase the application value of SBP in the cosmetic and antioxidative functional food industries.

3.
Front Nutr ; 9: 969465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36133078

RESUMO

Sea buckthorn peel is the by-product of the sea buckthorn processing, which contains many bioactive compounds. In this paper, sea buckthorn high methoxyl pectin (SBHMP) was obtained, with a yield of 8% and a light-colored. The SBHMP was a high methoxyl with a degree of esterification of 57.75% and uronic acid content of 65.35%. The structural and morphological characterization of SBHMP were analyzed by high-performance liquid chromatography, Fourier-transform infrared spectroscopy, and scanning electron microscopy. Results showed that SBHMP presented a sheet and layered stacked morphological, and was mainly composed of galacturonic acid, arabinose, galactose, rhamnose, and mannose, which indicated that SBHMP mainly consisted of homogalacturonan (HG) and rhamnogalacturonan-I (RG-I) type pectin polysaccharides. In addition, SBHMP also presented significant gel, thickening, and emulsifying properties. The results exhibited that SBHMP could form jelly-like gels under acid and high sucrose conditions, presenting a shear-thinning behavior and increasing apparent viscosity with the enhancement of pectin and sucrose contents. Besides, SBHMP could form oil-in-water emulsions with pectin concentrations of 1.0-3.0%. When the SBHMP concentrations were 2.0 and 3.0%, the emulsions were stable during 7 days of storage. Findings in this paper demonstrated the potential of SBHMP to be a food thickener and emulsifier and support the in-depth utilization of sea buckthorn by-products.

4.
Front Pharmacol ; 13: 914146, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873561

RESUMO

Sea buckthorn proanthocyanidins (SBP) are the most important antioxidant components of sea buckthorn, which are widely used in functional foods and cosmetics. Studies have shown that SBP have significant protective effects on macrophages against oxidative stress induced by hydrogen peroxide (H2O2). However, the mechanism remains uncertain. In the present study, we explored the effects of SBP on mitochondrial function and the mechanism of their protective effects against oxidative stress in cells. Our results showed that SBP could increase mitochondrial membrane potential, inhibit mPTP opening, reduce mitochondrial swelling, and enhance mitochondrial synthesis and metabolism. Thus, they alleviated oxidative damage and protected the cells against mitochondrial function. Western blot analysis showed that SBP had a protective effect on RAW264.7 cells by activating the AMPK-PGC1α-Nrf2 pathway. These results showed that SBP alleviated mitochondrial damage and dysfunction caused by oxidative stress. This study revealed the mechanism of SBP in reducing oxidative damage and provided a theoretical basis for further research on natural bioactive compounds to exert antioxidant activity and prevent arteriosclerosis and other diseases.

5.
Front Nutr ; 9: 850076, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35656158

RESUMO

As society develops and aging populations increase, the incidence of arteriosclerosis, a seriously harmful cardiovascular disease (CVD) which mostly results from endothelial cellular oxidative damage, has continuously risen. Procyanidins from sea-buckthorn is a powerful antioxidant, although its protective effect on the cardiovascular system is not yet clearly understand. In this study, oxidative damaged HUVECs induced by palmitate acid (PA) were used as a model and the regulatory effect of procyanidins from sea-buckthorn (SBP) on HUVECs were investigated. The results showed SBP can be used for 12 h by HUVECs and had no detective cytotoxicity to them under 400 µg/L. Also, different concentrations of SBP can increase mitochondrial membrane potential and NO level and decrease LDH leakage in a dose-effect relationship, indicating SBP can improve oxidative damage. In addition, western blots and qPCR results showed SBP regulation on oxidative injured HUVECs is probably through p38MAPK/NF-κB signal pathway. This study revealed the molecular mechanism of procyanidins in decreasing endothelial oxidative damage, providing a theoretical foundation for further research on natural bioactive compounds to exert antioxidant activity in the body and prevent and improve cardiovascular diseases.

6.
Curr Res Food Sci ; 4: 840-851, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34877544

RESUMO

Procyanidin is an important polyphenol for its health-promoting properties, however, the study of procyanidin in sea buckthorn was limited. In this paper, sea buckthorn procyanidin (SBP) was obtained through a green isolation and enrichment technique with an extraction rate and purity of 9.1% and 91.5%. The structure of SBP was analyzed using Ultraviolet-visible spectroscopy (UV-vis), Fourier-transform infrared spectroscopy (FT-IR), and liquid chromatography-mass spectrometry (LC-MS/MS). The results show that SBP is an oligomeric procyanidin, mainly composed of (-)-epicatechin gallate, procyanidin B, (+)-gallocatechin-(+)-catechin, and (+)-gallocatechin dimer. SBP showed superior scavenging capacity on free radicals. Furthermore, the cleaning rate of the ABTS radical was 4.8 times higher than vitamin C at the same concentration. Moreover, SBP combined with vitamin C presented potent synergistic antioxidants with combined index values below 0.3 with concentration rates from 5:5 to 2:8. SBP also provided significant protection against oxidative stress caused by hydrogen peroxide (H2O2) on RAW264.7 cells. These findings prove the potential of SBP as a natural antioxidant in food additives and support the in-depth development of sea buckthorn resources.

7.
Int J Biol Macromol ; 183: 79-89, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33901556

RESUMO

Agaricus bitorquis (QuéL.) Sacc. Chaidam is a valuable edible fungus in Qinghai-Tibet plateau and ABSP is a novel intracellular polysaccharide from its mycelia. GC and NMR analysis determined ABSP is galactoglucomannan-like polysaccharide that may have immunomodulatory effect. This study used RAW264.7 as model cell to determine immunomodulatory effect of ABSP. After ABSP treatment, viability and phagocytic ability promoted, and NO, ROS, TNF-α levels also raised which proved ABSP had immune regulation to RAW264.7. WB and qRT-PCR determined the key proteins and genes expression of TLR4, MyD88, TRAF-6 and NF-κB significantly increased while protein and gene expression of TRAM had no significant increase. Also, TNF-α level extremely decreased by adding inhibitors of TLR4 and MyD88 which confirmed ABSP could immunologically regulate RAW264.7 byTLR4-MyD88 dependent pathway. This study would provide theoretical basis for further study on ABSP and be helpful for development of beneficial functionally foods and exploitation of this resource.


Assuntos
Agaricus/química , Polissacarídeos Fúngicos/farmacologia , Fatores Imunológicos/farmacologia , Macrófagos/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Polissacarídeos Fúngicos/isolamento & purificação , Fatores Imunológicos/isolamento & purificação , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Fagocitose/efeitos dos fármacos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
8.
Front Nutr ; 8: 820672, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35155531

RESUMO

To improve the rough texture and hypoglycemic ability of sea buckthorn insoluble dietary fiber (IDF), a novel combined modification method was developed in this study. The IDF was treated with ball milling and cellulase treatment to obtain co-modified insoluble dietary fiber (CIDF). The physicochemical and functional properties of IDF, milled insoluble dietary fiber (MIDF), and CIDF were studied. After treatments, MIDF had smaller particle sizes and a looser structure, and CIDF exhibited a wrinkled surface and sparse porous structure according to scanning electron microscopy (SEM) and X-ray diffraction. Compared to IDF, MIDF and CIDF showed improved water-holding, oil-binding, and swelling capacities, improved by 16.13, 14.29, and 15.38%, and 38.5, 22.2, and 25.0%, for MIDF and CIDF, respectively. The cation exchange ability of modified samples showed improvement as well. Treatments also changed the fluidity of MIDF and CIDF. Due to the smaller particles and increased stacking, the bulk density (BD) and angle of repose of MIDF improved by 33.3% and 4.1° compared to IDF, whereas CIDF had a looser structure and thus decreased by 7.1% and 13.3° with increased fluidity. Moreover, the modification also enhanced the effects of CIDF on glucose adsorption, glucose diffusion inhibition, starch digestion inhibition, starch pasting interference, and α-amylase activity inhibition. In summary, IDF modified by ball milling combined with cellulose treatment could be developed as a functional ingredient for regulating glucose content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...